Criteria Checklist for EBR

Prior to the first injections or amendments:

- Mapping Contaminant Locations and Concentrations
 - Locate and map LNAPL
 - o Locate and map dissolved-phase benzene, at concentrations in excess of 5 ug/L
 - o Calculate how much total LNAPL is present at the start of the EBR
 - o Determine the amount of benzene in the LNAPL at the start of EBR
 - Determine time estimate for LNAPL removal
 - o Provide details of how Pre-EBR LNAPL models were generated
 - o Calculate the amount of sulfate needed to maximize benzene biodegradation
 - o Provide details used to determine the above sulfate calculations
- Site Geochemistry to be Obtained
 - Groundwater temperature
 - o pHs
 - o ORP values
 - o DO concentrations
 - Nitrate concentrations
 - o Ferrous iron concentrations
 - Sulfate concentrations
 - Benzene concentrations
 - Hydrogen sulfide concentrations
- Indigenous Microbial Population, Pre-EBR
 - o The total size of the indigenous microbial population in the injection areas
 - The major classifications of microbes composed this total population, and at what proportion of the total were each classification
 - The total size of the microbial population capable of conducting sulfate-reduction under current site conditions
 - The total size of the microbial population capable of biodegrading benzene, under current site conditions
 - o The in-situ rate of benzene biodegradation
 - How much benzene was being converted into microbial biomass
 - o How much benzene was being fully mineralized to carbon dioxide
 - O Determine the dominant terminal-electron acceptor process for the indigenous microbial population, prior to any injections or amendments

During EBR, once per quarter

- Mapping Contaminant Locations and Concentrations
 - Locate and map LNAPL
 - o Locate and map dissolved-phase benzene, at concentrations in excess of 5 ug/L
 - o Calculate how much total LNAPL was present at the start of the EBR pilot
 - Determine time estimate for LNAPL removal

- o Provide details of how LNAPL models were generated
- o Calculate the amount of sulfate needed to maximize benzene biodegradation
- o For each sulfate injection, map area of influence of injection
- o Provide details used to determine the above sulfate calculations
- Site Geochemistry to be Obtained
 - Groundwater temperature
 - o pHs
 - o ORP values
 - DO concentrations
 - Nitrate concentrations
 - o Ferrous iron concentrations
 - Sulfate concentrations
 - Benzene concentrations
 - Hydrogen sulfide concentrations
- Injection Information

Post-EBR

- Mapping Contaminant Locations and Concentrations
 - Locate and map remaining LNAPL
 - Locate and map remaining dissolved-phase benzene, at concentrations in excess of 5 ug/L
 - o Calculate how much total LNAPL is present at the end of the EBR pilot
 - Calculate total LNAPL loss during EBR
 - o Determine the amount of benzene in the LNAPL at the end of EBR
 - o Determine total LNAPL benzene lost during EBR
 - o Determine time estimate for the removal of any remaining LNAPL
 - o Provide details of how Post-EBR LNAPL models were generated
 - Calculate the amount of sulfate needed to maximize remaining benzene biodegradation
 - Provide details used to determine the above sulfate calculations
- Site Geochemistry to be Obtained
 - o Groundwater temperature
 - o pHs
 - o ORP values
 - DO concentrations
 - Nitrate concentrations
 - o Ferrous iron concentrations
 - Sulfate concentrations
 - o Benzene concentrations
 - Hydrogen sulfide concentrations
- Indigenous Microbial Population, Post-EBR
 - The total size of the indigenous microbial population in the injection areas
 - The major classifications of microbes composed this total population, and at what proportion of the total were each classification

- The total size of the microbial population capable of conducting sulfate-reduction under current site conditions
- The total size of the microbial population capable of biodegrading benzene, under current site conditions
- O The in-situ rate of benzene biodegradation
- o How much benzene was being converted into microbial biomass
- o How much benzene was being fully mineralized to carbon dioxide
- O Determine the dominant terminal-electron acceptor process for the indigenous microbial population, prior to any injections or amendments